Реальность- дополненная, технологии — эффективные

Светодиоды для технологий дополненной реальности стали вдвое эффективнее

Международный коллектив ученых из России и Кореи усовершенствовал метод изготовления микро- и наносветодиодов для LED-экранов и VR-очков. Он повышает их эффективность преобразования электричества в световое излучение с 5,5% до 10,6%. Новая технология успешнее устраняет дефекты, из-за которых происходит утечка тока.

Светодиоды на основе структуры из нитрида галлия и нитрида индия-галлия — это полупроводниковые приборы, которые могут излучать свет от сине-фиолетового до зеленого и красного цветовых диапазонов. Они используются в системах освещения, хранения данных и связи. Благодаря высокой яркости, нано- и микросветодиоды востребованы для микродисплеев и микропроекторов на быстро развивающемся рынке технологий дополненной реальности. Для создания микро- и наноразмерных светодиодов чаще всего используется метод сухого травления больших светодиодов, т. е. удаления их бокового слоя химическими веществами и плазмой.

«В процессе создания светодиодов менее 30 микрометров часто возникают проблемы. После этапа сухого травления на стенках диодов появляются дефекты. Это приводит к росту безызлучательной рекомбинации, т. е. электрическая энергия преобразуется не в свет, а, например, в тепло», — рассказала Луиза Алексанян, инженер научного проекта лаборатории «Ультраширокозонные полупроводники» НИТУ МИСИС.

Одним из важнейших параметров оценки работы светодиода является внутренняя квантовая эффективность, которая показывает, насколько хорошо устройство преобразует электричество в свет. Из-за появления дефектов у структур без дополнительной обработки она составляет всего 5,5%. Чтобы решить эту проблему, используются различные методы: высокотемпературный отжиг, покрытие поверхности различными веществами и травление боковых стенок гидроксидом калия. Однако эти способы повышают эффективность лишь до 6,8%.

Ученые НИТУ МИСИС, Физического института им. П.Н. Лебедева РАН совместно с коллегами из корейского Университета Корё разработали новый метод устранения дефектов.

«Мы добавили наночастицы серебра, покрытые диоксидом кремния в полимер, заполняющий пространство между наносветодиодами. Эти частицы создают альтернативный маршрут передачи энергии для носителей заряда, что может улучшить его способность излучать свет. Разработка привела к максимальному улучшению внутренней квантовой эффективности до 10,6%», — отметил к.т.н. Александр Поляков, заведующий лабораторией «Ультраширокозонные полупроводники» НИТУ МИСИС.

Работа открывает новые возможности для создания более ярких и энергоэффективных осветительных приборов.

Подробные результаты опубликованы в журнале Journal of Alloys and Compounds (Q1).

Работа поддержана грантом Минобрнауки России (проект № 075-15-2022-1113).

Об университете

Университет науки и технологий МИСИС – ведущий вуз страны в области создания, внедрения и применения новых технологий и материалов. В научно-исследовательской деятельности Университет МИСИС концентрируется на таких приоритетных направлениях, как металлургия, горное дело, материаловедение, квантовые технологии, биоматериалы и биоинженерия, альтернативная энергетика, аддитивные и информационные технологии.

В вузе действует 45 научно-исследовательских лабораторий и инжиниринговых центров мирового уровня, в которых работают ведущие российские и зарубежные ученые. В состав университета входит 7 институтов и 6 филиалов – четыре в России и два за рубежом. В вузе более 23 000 обучающихся, 25% студентов – граждане 86 стран. Университет МИСИС сотрудничает более чем с 1600 крупнейшими компаниями России и мира – лидерами в своих отраслях. Официальный сайт вуза – https://misis.ru/.

Фото: пресс-служба НИТУ МИСИС

Похожие записи